CFD and Experimental Study on the Effect of Progressive Heating on Fluid Flow inside a Thermal Wind Tunnel

نویسندگان

  • Hassam Nasarullah Chaudhry
  • John Kaiser Calautit
  • Ben Richard Hughes
  • Lik Fang Sim
چکیده

A detailed Computational Fluid Dynamics (CFD) and experimental investigation into characterizing the fluid flow and thermal profiles in a wind tunnel was carried out, highlighting the effect of progressive heating on the non-uniformity flow profile of air. Using controllable electrical heating elements, the operating temperatures in the test-section were gradually increased in order to determine its influence on the subsequent velocity and thermal profiles found inside the test-section. The numerical study was carried out using CFD FLUENT code, alongside validating the experimental results. Good correlation was observed as the comparison yielded a mean error of 6.4% for the air velocity parameter and 2.3% for the air temperature parameter between the two techniques. The good correlation established between the numerically predicted and experimentally tested results identified broad scope for using the advanced computational capabilities of CFD applicable to the thermal modeling of wind tunnels. For a constant temperature process, the non-uniformity and turbulence intensity in the test section was 0.9% and 0.5%, which is under the recommended guidelines for wind tunnels. The findings revealed that the increase in temperature from 20 °C to 50 °C reduced the velocity by 15.2% inside the test section. OPEN ACCESS Computation 2015, 3 510

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Investigation of the Effect of Geometry and Type of Nanofluids on the Heat Transfer Inside the Microchannel using Computational Fluid Dynamics (CFD)

The purpose of this article is the numerical study of flow and heat transfer characteristics of Nanofluids inside a cylindrical microchannel with rectangular, triangular, and circular cross-sections. The size and shape of these sections have a significant impact on the thermal and hydraulic performance of the microchannel heat exchanger. The Nanofluids used in this work include water and De-Eth...

متن کامل

Experimental Study on Flow Characteristics Around Twin Wind Blades (RESEARCH NOTE)

In the current study, twin wind blades are designed, fabricated and the effect of various gap ratio (g*) at various angle of attacks (α) on a next to each other twin wind blades are examined in an open-channel wind tunnel. Aerodynamic forces and moments are determined by using three-constraint force balancer. For gap ratio of zero, the aerodynamic attributes are like those of a solitary wind bl...

متن کامل

Friction Stir Welding؛ Material Flow؛ Heat Generation؛ Thermal Simulation؛ Poly methyl methacrylate (PMMA)

In this study, the effects of linear and rotational speed of the friction stir welding tool was investigated on the heat generation and distribution at surface and inside of workpiece, material flow and geometry of the welding area of poly methyl methacrylate (PMMA) workpiece. The commercial CFD Fluent 6.4 software was used to simulation of the process with computational fluid dynamic technique...

متن کامل

Computational fluid dynamics study and GA modeling approach of the bend angle effect on thermal-hydraulic characteristics in zigzag channels

In the study, the thermal-hydraulic performance of the zigzag channels with circular cross-section was analyzed by Computational Fluid Dynamics (CFD). The standard K-Ꜫ turbulent scalable wall functions were used for modeling. The wall temperature was assumed constant 353 K and water was used as the working fluid. The zigzag serpentine channels with bend angles of 5 - 45° were studied for turbul...

متن کامل

Effect of Surface Roughness on Vortex Length and Efficiency of Gas-oil Cyclones through CFD Modelling

Separation of suspended droplets in a fluid flow has been a great concern for scientists and technologists. In the current study, the effect of the surface roughness on flow field and the performance of a gas-oil cyclone is studied numerically. The droplets and the turbulent airflow inside the cyclone are considered to be the discrete and continuous phases respectively. The Reynolds stress mode...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computation

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2015